3. Markov Processes

3.1 Stochastic Processes

All of the examples given in Chap. 1 can be mathematically described as stochastic
processes by which we mean, in a loose sense, systems which evolve probabilistically
in time or more precisely, systems in which a certain time-dependent random
variable X(¢) exists. We can measure values x,, x,, x,, ..., etc., of X(¢) at times ¢,,
1, 15, ... and we assume that a set of joint probability densities exists

p(xy, 1y X5, by X5, 15 L) 3.1.1)

which describe the system completely.
In terms of these joint probability density functions, one can also define condi-
tional probability densities:

p(xy, 15 Xay By | D0y T Yoy Tas oe)

= p(xy, 43 X5, L2503 Yo, T:%y‘z, 725 = )P(P1s Tas P2y T25 000). (3.1.2)

These definitions are valid independently of the ordering of the times, although it is
usual to consider only times which increase from right to left i.e.,

hZ2hLZ2HL2 . 2T, 21,2 ... (3.1.3)

The concept of an evolution equation leads us to consider the conditional probabili-
ties as predictions of the future values of X(¢) (i.e., x,, x,, ... attimes #,, ¢,, ...), given
the knowledge of the past (values y,, y,, ..., at times 17,,7,, ...).

The concept of a general stochastic process is very loose. To define the process
we need to know at least all possible joint probabilities of the kind in (3.1.1). If such
knowledge does define the process, it is known as a separable stochastic process.
All the processes considered in this book will be assumed to be separable.

The most simple kind of stochastic process is that of complete independence:

p(xy, 1y X, 12 X3, 155 ..) = I‘I p(xi, 1) (3.14)

which means that the value of X at time ¢ is completely independent of its values in
the past (or future). An even more special case occurs when the p(x,, ;) are inde-
pendent of #,, so that the same probability law governs the process at all times. We
then have the Bernoulli trials, in which a probabilistic process is repeated at succes-
sive times.
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The next most simple idea is that of the Markov process in which knowledge o
only the present determines the future.

3.2 Markov Process

The Markov assumption is formulated in terms of the conditional probabilities. Wi
require that if the times satisfy the ordering (3.1.3), the conditional probability i
determined entirely by the knowledge of the most recent condition, i.e.,

P(xy, 45 X, a5 ool [P0, T P2, T2 -00)
= p(xy, 13 X, L5 oo | Y1, T))- (3.2.1

This is simply a more precise statement of the assumptions made by Einsteir
Smoluchowski and others. It is, even by itself, extremely powerful. For it mean
that we can define everything in terms of the simple conditional probabilitie
p(x,, 1|y, 7,). For example, by definition of the conditional probability densit
P(x1, 115 X5 1] Y1, 1)) = p(xy, 11| X2, 125 Y1, T)P(X2, 12| ¥4, 7)) and using the Marko
assumption (3.2.1), we find

p(xy, 115 X, Uy Py, T) = p(xy, 1| X2, 02)p(X2, 15| 91, T)) 3.22
and it is not difficult to see that an arbitrary joint probability can be expressed sim
ply as

p(x], ltl 3 X2, fz; X3, t3; wee Xpy fu)

= p(xy, ;| X3, )p(x2, 2| X3, 1:)p(X3, 13| X4, 1) - (3.2.2
e p(‘tn—l: f.—l |xm tu)p(xm tn)

provided

hZhL26L2..210,,21,. (3.2.¢

3.2.1 Consistency—the Chapman-Kolmogorov Equation

From Sect.2.3.3 we require that summing over all mutually exclusive events ¢
one kind in a joint probability eliminates that variable, i.e.,

XPANBNC.)=PANC..); (3.2.:

and when this is applied to stochastic processes, we get two deceptively simile
equations:

plxy, 1) = _[ dx, p(xy, t); X3, 1)
= [ dx, p(x,, 1| x2, (33, 12) . (3.2



44 3. Markov Processes

This equation is an identity valid for all stochastic processes and is the first in a
hierarchy of equations, the second of which is

plxy, x5, ) = I dx, p(xy, 15 X2, 1] X3, t3)
= _I- dxz p(xls 1‘I lea 15 X3, fs)P(xz’ ri{xih t!)' (3'2'?)

This equation is also always valid. We now introduce the Markov assumption. If
ti = t, = t,, we can drop the t; dependence in the doubly conditioned probability
and write

p(xy, 4] x5, 15) = I dx; p(xy, 1| X2, 1)p(X3, 1] X3, 1) (3.2.8)

which is the Chapman-Kolmogorov equation.

What is the essential difference between (3.2.8) and (3.2.6)? The obvious answer
is that (3.2.6) is for unconditioned probabilities, whereas (3.2.7) is for conditional
probabilities. Equation (3.2.8) is a rather complex nonlinear functional equation
relating all conditional probabilities p(x,, t,|x,, t;) to each other, whereas (3.2.6)
simply constructs the one time probabilities in the future #, of #,, given the
conditional probability p(x,, t, | x, ).

The Chapman-Kolmogorov equation has many solutions. These are best under-
stood by deriving the differential form which is done in Sect. 3.4.1 under certain
rather mild conditions.

3.2.2 Discrete State Spaces

”

In the case where we have a discrete variable, we will use the symbol N = (N,, N,
N, ...), where the N, are random variables which take on integral values. Clearly,
we now replace

JdxeX 3.29
and we can now write the Chapman-Kolmogorov equation for such a process as
P(m, t,|n;, t;) = 3 P(my, 1| Ry, t3) P(ny, t2]ms, t5) (3.2.10

This is now a matrix multiplication, with possibly infinite matrices.

3.2.3 More General Measures

A more general formulation would assume a measure du(x) instead of dx where a
variety of choices can be made. For example, if u(x) is a step function with steps at
integral values of x, we recover the discrete state space form. Most mathematical
works attempt to be as general as possible. For applications, such generality can
lead to lack of clarity so, where possible, we will favour a more specific notation.
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3.3 Continuity in Stochastic Processes

Whether or not the random variable X(¢) has a continuous range of possible values
is a completely different question from whether the sample path of X(¢) is a continu-
ous function of t. For example, in a gas composed of molecules with velocities F(¢),
it is clear that all possible values of F{(¢) are in principle realisable, so that the range
of W(¢) is continuous. However, a model of collisions in a gas of hard spheres as
occurring instantaneously is often considered, and in such a model the velocity be-
fore the collision, v;, will change instantaneously at the time of impact to another
value v;, so the sample path of F(r) is not continuous. Nevertheless, in such a
model, the position of a gas molecule X(r) would be expected to be continuous.

A major question now arises. Do Markov processes with continuous sample paths
actually exist in reality? Notice the combination of Markov and continuous. 1t is
almost certainly the case that in a classical picture (i.e., not quantum mechanical),
all variables with a continuous range have continuous sample paths. Even the hard
sphere gas mentioned above is an idealisation and more realistically, one should
allow some potential to act which would continuously deflect the molecules during
a collision. But it would also be the case that, if we observe on such a fine time scale,
the process will probably not be Markovian. The immediate history of the whole
system will almost certainly be required to predict even the probabilistic future.
This is certainly born out in all attempts to derive Markovian probabilistic equa-
tions from mechanics. Equations which are derived are rarely truly Markovian—
rather there is a certain characteristic memory time during which the previous
history is important (Haake [3.1]).

This means that there is really no such thing as a Markov process; rather,
there may be systems whose memory time is so small that, on the time scale on
which we carry out observations, it is fair to regard them as being well appro-
ximated by a Markov process. But in this case, the question of whether the sample
paths are actually continuous is not relevant. The sample paths of the approxi-
mating Markov process certainly need not be continuous. Even if collisions of mole-
cules are not accurately modelled by hard spheres, during the time taken for a
collision, a finite change of velocity takes place and this will appear in the appro-
ximating Markov. process as a discrete step. On this time scale, even the position
may change discontinuously, thus giving the picture of Brownian motion as
modelled by Einstein.

In chemical reactions, for example, the time taken for an individual reaction to
proceed to completion—roughly of the same order of magnitude as the collision
time for molecules—provides yet another minimum time, since during this time,
states which cannot be described in terms of individual molecules exist. Here, there-
fore, the very description of the state in terms of individual molecules requires a
certain minimum time scale to be considered.

However, Markov processes with continuous sample paths do exist mathema-
tically and are useful in describing reality. The model of the gas mentioned above
provides a useful example. The position of the molecule is indeed probably best
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modelled as changing discontinuously by discrete jumps. Compared to the distances
travelled, however, these jumps are infinitesimal and a continuous curve provides
a good approximation to the sample path. On the other hand, the velocities can
change by amounts which are of the same order of magnitude as typical values at-
tained in practice. The average velocity of a molecule in a gas is about 1000 m/s
and during a collision can easily reverse its sign. The velocities simply cannot reach
(with any significant probability) values for which the changes of velocity can be
regarded as very small. Hence, there is no sense in a continuous path description of
velocities in a gas.

3.3.1 Mathematical Definition of a Continuous Markov Process

For a Markov process, it can be shown [3.2] that with probability one, the sample
paths are continuous functions of ¢, if for any ¢ > 0 we have

lim A ] dxple 4 Atz =0 (3.3.0)

x=zi>e

uniformly in z, ¢ and At.

This means that the probability for the final position x to be finitely different
from z goes to zero faster thaf\At, as At goes to zero. [Equation (3.3.1) is sometimes
called the Lindeberg condition.]

Examples 3

i) Einstein’s solution for his f(x, t) (Sect. 1.2.1) is really the conditional probability
p(x, t]0, 0). Following his method we would find

p(x, t + At|z,t) = (4nDAt)~"? exp [— (x — 2)*/4DAr)] (3.3.2)

and it is easy to check that (3.3.1) is satisfied in this case. Thus, Brownian motion
in Einstein’s formulation has continuous sample paths.

i1) Cauchy Process: Suppose
At ) )
p(x, t + Atz t) = ;f[(x — z)* + At7]. (3.3.3)

Then this does not satisfy (3.3.1) so the sample paths are discontinuous.
However, in both cases, we have as required for consistency

lim p(x, £+ At|z, 1) = 8(x — 2), (3.3.4)
=0

and it is easy to show that in both cases, the Chapman-Kolomogorov equation is
satisfied.

The difference between the two processes just described is illustrated in Fig. 3.1
in which simulations of both processes are given. The difference between the two is
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. Fig. 3.1. Illustration of sample paths of
———— | the Cauchy process X(t) (----- ) and

- X(t) L_/7| Brownian motion W(r) ( )

Wit)

te

striking. Notice, however, that even the Brownian motion curve is extremely irre-
gular, even though continuous—in fact it is nowhere differentiable. The Cauchy-
process curve is, of course, wildly discontinuous.

3.4 Differential Chapman-Kolmogorov Equation

Under appropriate assumptions, the Chapman-Kolmogorov equation can be re-
duced to a differential equation. The assumptions made are closely connected with
the continuity properties of the process under consideration. Because of the form
of the continuity condition (3.3.1), one is led to consider a method of dividing
the differentiability conditions into parts, one corresponding to continuous motion
of a representative point and the other to discontinuous motion.

We require the following conditions for all ¢ > 0:

i) lim p(x, £ + Atz, 1)/Ar = W(x|z, 1) (3.4.1)
0
uniformly in x, z, and ¢ for |x — 2| = ¢;

H) Jim Alr [ dx(xi—z)p(x, t + At]2,1) = Az, 1) + O() ; (3.4.2)

lz—zi<e

ii) fim ALM [ dx(x, — z) (x, — z))p(x, t + At|z, 1) = B,(z, 1) + O(); (3.4.3)
- x—z|<g

the last two being uniform in z, ¢, and 1.

Notice that all higher-order coefficients of the form in (3.4.2,3) must vanish. For
example, consider the third-order quantity defined by

im L —
m mu-'L - dx (x; — z)(x; — z)(xx — z2) p(x, t + At] 2, 1)

= Cuk(z» t) 4 O(e) . (3.4.4)
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Since Cyj, is symmetric in /, j, k, consider

Z atajakCUk(z, I) = C_(a, Z, I) (3.4.5)
iJ.k
so that
Ciul :)~lLE( 1) (3.4.6)
& D) = 31 da,day B -

Then,

Ié(a,z,f)lélimBL [ le(x—=2)le(x — P plx, t + 4t|z2, 1) dx

Ar—0 lx—ti<g

+ O(e)
< lele liin [ [a-(x — D)Pp(x, t + At|z, t)dx + O()

= ¢|a|[ee;B;(z, ) + O(e)] + O(e)
= 0(e) (3.4.7)

so that C is zero. Similary, we can show that all corresponding higher-order quanti-
ties also vanish.

According to the condition for continuity (3.3.1), the process can only have con-
tinuous paths if W(x|z, t) vanishes for all x # z. Thus, this function must in some
way describe discontinuous motion, while the quantities "4, and B,, must be
connected with continuous motion.

3.4.1 Derivation of the Differential Chapman-Kolmogorov Equation
We consider the time evolution of the expectation of a function f(z) which is

twice continuously differentiable.
Thus,

o, [ dx f(x)p(x, t|y, t')

= E\iTu {] dx f(x)[p(x, t + At|y, 1") — p(x, 1|y, 1)]} /At (3.4.8)
= lt-l}‘l {Jl dx j d:f(x)P(x; t+ A!lz, I)p(z, t'ys f')
0
—  [dzf(D)p(z, t|y, t")} /AL, (3.4.9)

where we have used the Chapman-Kolmogorov equation in the positive term of
(3.4.8) to produce the corresponding term in (3.4.9).

We now divide the integral over x into two regions |x — z| = ¢ and |x — z|
< &. When |x — z| < ¢, since f(z) is, by assumption, twice continuously differen-
tiable, we may write
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1) = 1@ + 24D~ 2) + 55 502 00— 20— 2)

+ |x — z|*R(x, 2) , (3.4.10)

where we have (again by the twice continuous differentiability)
|R(x,2z)| -0 as |x—2z|—0. (3.4.11)

Now substitute in (3.4.9):

(3.4.9) = lim = { [f dxdz [Z(x; - z‘) + 2 7 (= 2)(x, —2) a‘f‘;z_‘é;]

lz—z|<g
X p(x, t + At|z,1) p(z, 1]y, ')
+ [[ dxdz |x — z|*R(x, 2)p(x, t + At|z, t)p(z, t|y, 1)

+ “ dxdz f(x)p(x, t + At|z, t)p(z, t|y, t')
lx—zl=e
+ [[ dxdzf(2)p(x, t + At|z, )p(z, t|p, 1)
lx—zl<g
— [[ dxdz f(2)p(x, t + At|z, t)p(z, |y, 1) (34.12)

[notice that since p(x, r + At|z, t) is a probability, the integral over x in the last
term gives 1—this is simply the last term in (3.4.9)].
We now consider these line by line.

Lines 1,2: by the assumed uniform convergence, we take the limit inside the integral
to obtain [using conditions (ii) and (iii) of Sect. 3.4]

jdz[z A,(z) 3f + F_‘. B,(z) e gz] p(z, t|y, t') + O() . (3.4.13)

Line 3: this is a remainder term and vanishes as ¢ — 0. For

|%; | dx|x—z|?R(x, Op(x, 1 + At|z, 1)
lx—zx| <g
é[AL [ dx|x—z|%p(x,t + Atlz,r)] Max | R(x, z)| (3.4.14)
t lx—zl <g lx—zl<g

— 32 Bul(z, 1) + 0()] {Max |R(x, 2)|}.
x—I|<e
From (3.4.11) we can see that as ¢ — 0, the factor in curly brackets vanishes.

Lines 4-6: We can put these all together to obtain

[| dxdz f()[W(z|x, )p(x, t|y, t') — W(x|z, t)p(z, t]y, t))]. (3.4.15)

lx—zl=e
r
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The whole right-hand side of (3.4.12) is independent of e. Hence, taking the limit
& —0, we find

0. ] dz fapta,f1y.0) = [dz [ 5 4k, 0 2 + 5 28,0722 ez, 11y, 1)
+ [ d2 f(0) (Jax(W x|, OpC, t1y, 1) — Wiz |z, Op(a, 11y, ) . (B4.16)

Notice, however, that we use the definition

lim [ dxF(x,2)= fdx F(x, 2) (3.4.17)

=0 |x7i>e

for a principal value integral of a function F(x, z). For (3.4.16) to have any meaning,
this integral should exist. Equation (3.4.1) defines W(x |z, t) only for x # z and
hence leaves open the possibility that it is infinite at x = z, as is indeed the case
for the Cauchy process, discussed in Sect. 3.3.1, for which

W(x|z, 1) = 1/[n(x — 2)?]. (3.4.18)

However, if p(x, t|y, t') is continuous and once differentiable, then the principal
value integral exists. In the remainder of the book we shall not write this integral
explicitly as a principal value integral since one rarely considers the singular cases
for which it is necessary.

The final step now is to integrate by, parts. We find

”~

[dz f(2)3.p(z, t|y, t') = [dz f(z) [—2 ai Afz, )p(z, t|y, t')
+ 2 2 az az Bh‘(z f)P(z,l‘U’, ')
+ [dx[W(z|x, t)p(x, t]y, ") — W(x|z, t)p(z, t|y, t")]
-+ surface terms. (3.4.19)

We have not specified the range of the integrals. Suppose the process is confined to
a region R with surface S. Then clearly,

p(x, t|z,¢t") = 0 unless both x and z € R. (3.4.20)
It is clear that by definition we have

W(x|z,t) = O unless both x and y € R. (3.4.21)
But the conditions on A,(z, t) and B,/(z, t) can result in discontinuities in these func-
tions as defined by (3.4.2.3) since the conditional probability p(x,  + At|z, ') can

very reasonably change discontinuously as z crosses the boundary of R, reflecting
the fact that no transitions are allowed from outside R to inside R.
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In integrating by parts, we are forced to differentiate both 4, and B,, and by our
reasoning above, one cannot assume that this is possible on the boundary of the
region. Hence, let us choose f(z) to be arbitrary but nonvanishing only in an ar-
bitrary region R’ entirely contained in R. We can then deduce that for all z in the
interior of R,

8.0z, 113, 1) = — 3 - [z, Optz, 113, 1)

1 @ )
+ g?éﬁ [Bu(z| I)P(Z, fl}', t )] (3422)

+ [ dx [W(z|x, O)p(x, 1|y, ') — W(x|z, )p(z, t|p, )] .-

Surface terms do not arise, since they necessarily vanish.

This equation does not seem to have any agreed name in the literature. Since it
is purely a differential form of the Chapman-Kolmogorov equation, I propose to
call it the differential Chapman-Kolmogorov equation.

3.4.2 Status of the Differential Chapman-Kolmogorov Equation

From our derivation it is not clear to what extent solutions of the differential
Chapman-Kolmogorov equation are solutions of the Chapman-Kolmogorov equ-
ation itself or indeed, to what extent solutions exist. It is certainly true, however,
that a set of conditional probabilities which obey the Chapman-Kolmogorov
equation does generate a Markov process, in the sense that the joint probabilities
so generated satisfy all probability axioms.

It can be shown [3.3] that, under certain conditions, if we specify A(x, 1), B(x, )
(which must be positive semi-definite), and W(x|y, t) (which must be non-negative),
that a non-negative solution to the differential Chapman-Kolmogorov equation
exists, and this solution also satisfies the Chapman-Kolmogorov equation. The
conditions to be satisfied are the initial condition,

p(z| fly, ‘).: 8(.” - Z)

which follows from the definition of the conditional probability density, and any
appropriate boundary conditions. These are very difficult to specify in the full
equation, but in the case of the Fokker-Planck equation (Sect. 3.5.2) are given in
Chap. 5.

3.5 Interpretation of Conditions and Results

Each of the conditions (i), (ii), (iii) of Sect. 3.4 can now be seen to give rise to
a distinctive part of the equation, whose interpretation is rather straightforward.
We can identify three processes taking place, which are known as jumps, drift
and diffusion.
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3.5.1 Jump Processes: The Master Equation
We consider a case in which
Az, 1) = B,(z,1) =0 (3.5.1)

so that we now have the Master equation:

0.p(z, ty, t") = [ dx [W(z|x, t)p(x, t|y, t') — W(x|z,t)p(z, t|y, t)]. (3.5.2)

To first order in Ar we solve approximately, as follows. Notice that

p(z, t|y, 1) =8(y — 2). (3.5.3)
Hence,
p(z, t + At|y, 1) = 8(y — 2)[1 — [dx W(x|y, )At] + W(z|y,1)Ar. (3.5.4)

We see that for any At there is a finite probability, given by the coefficient of the
8(y — z) in (3.5.4), for the particle to stay at the original position y. The dis-
tribution of those particles which do not remain at y is given by W(z|y, t) after
appropriate normalisation. Thus, a typical path X(¢) will consist of sections of
straight lines X(#) = constant, interspersed with discontinuous jumps whose dis-
tribution is given by W(z|y, t). For this reason, the process is known as a jump
process. The paths are discontinuous at discrete points.

In the case where the state space c3nsists of integers only, the Master equation
takes the form e

O, P(n,t|n, t")= S [W(n|m,t)P(m,t|n',t') — W(m|n,t)P(n,t|n',t")). (3.5.5)

There is no longer any question that only jumps can occur, since only discrete values
of the state variable N(f) are allowed. It is most important, however, to be aware
that a pure jump process can occur even though the variable X(¢) can take on a con-
tinuous range of variables.

3.5.2 Diffusion Processes—the Fokker-Planck Equation

If we assume the quantities W{(z|x, ) to be zero, the differential Chapman-Kolmo-
gorov equation reduces to the Fokker-Planck equation:

i AT R TIN)

+ Zaz az [Bﬂ(z! I)p (Z, f|y, t )] (356)

and the corresponding process is known mathematically as a diffusion process. The
vector A(z, t) is known as the drift vector and the matrix B(z, t) as the diffusion
matrix. The diffusion matrix is positive semidefinite and symmetric as a result of its
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definition in (3.4.3). It is easy to see that from the definition of W(x|z, 1) (3.4.1),
the requirement (3.3.1) for continuity of the sample paths is satisfied if W(x|z, t) is
zero. Hence, the Fokker-Planck equation describes a process in which X(7) has con-
tinuous sample paths. In fact, we can heuristically give a much more definite des-
cription of the process. Let us consider computing p(z, t + At|y, t), given that

p(z, 1|y, 1) =38z — y). @3.5.7)

For a small At, the solution of the Fokker-Planck equation will still be on the
whole sharply peaked, and hence derivatives of 4,(z, t) and B,(z, t) will be negli-
gible compared to those of p. We are thus reduced to solving, approximately

plz. ty, 1) oz, 11y, 1) | < 1 3p(z, t]y, 1)
3t - '_'ZI: A:(J" f) az‘ + § 2 B”(y, f) 32,82; ]

(3.5.8)
where we have also neglected the time dependence of 4, and B,, for small ¢t — ¢’.
Equation (3.5.8) can now be solved, subject to the initial condition (3.5.7), and
we get

p(z, t + At|y, t) = 2m)~™*{det[B(y, )]} *[At]"'2

s expl L8 =2 = A OMTB Oz = y = Aly. 0AT),

(3.5.9)

that is, a Gaussian distribution with variance matrix B(y, t)and mean y + A(y, t)At.
We get the picture of the system moving with a systematic drift, whose velocity is
A(y, t), on which is superimposed a Gaussian fluctuation with covariance matrix
B(y, t)At, that is, we can write

y(t 4 A) = y(t) + A(p(D), DAL + n()As'?, (3.5.10)
where (5(1)) =0 (3.5.11)
n@n()) = B(y, 1). (3.5.12)

It is easy to see that this picture gives

i) sample paths which are always continuous — for, clearly, as At — 0, p(r + At)
— y(1);

i) sample paths which are nowhere diffierentiable, because of the Ar'/? occurring in
(3.5.10).

We shall see later, in Chap. 4 that the heuristic picture of (3.5.10) can be made
much more precise and leads to the concept of the stochastic differential equation.

3.5.3 Deterministic Processes—Liouville’s Equation

It is possible that in the differential Chapman-Kolmogorov equation (3.4.22) only
the first term is nonzero. so we are led to the special case of a Liouville equation:
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‘:"P(_";l_-‘_‘i) = _‘28% [Adz, Dp(z, t]y, 1)] (:5.13)

which occurs in classical mechanics. This equation describes a completely deter-
ministic motion, i.e., if x(p, t) is the solution of the ordinary differential equation

%(:L) = Alx(t), 1] (3.5.14)

with x(y, t') = y, (3.5.15)

then the solution to (3.5.13) with initial condition

pz, 'y, t') =8z — ) (3.5.16)
is
p(z, t|y, ') = 8[z — x(y, 1)]. (3.5.17)
The proof of this assertion is best obtained by direct substituion. For
~2 2 {4z, 08lz — 502, ) (3.518)
= —2% {Alx(y, 1), 1][z — x(y, )]} (3.5.19)
= -3 [y, . 11581z — 53, 1) - (3.5.20)
and
280c — a3, 0] = — 5 52-8lz — x(p, 0] 2L (3.521)

and by use of (3.5.14), we see that (3.5.20,21) are equal. Thus, if the particle is in a
well-defined initial position y at time ¢’, it stays on the trajectory obtained by solving
the ordinary differential equation (3.5.14).

Hence, deterministic motion, as defined by a first-order differential equation of
the form (3.5.14), is an elementary form of Markov process. The solution (3.5.17)
is, of course, merely a special case of the kind of process approximated by equations
like (3.5.9) in which the Gaussian part is zero.

3.5.4 General Processes

In general, none of the quantities in A(z, 1), B(z,?) and W{(x|z, t) need vanish, and
in this case we obtain a process whose sample paths are as illustrated in Fig. 3.2,
i.e., a piecewise continuous path made up of pieces which correspond to a diffusion
process with a nonzero drift, onto which is superimposed a fluctuating part.
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Fig. 3.2. Illustration of a sample path
of a general Markov process, in which
drift, diffusion and jumps exist
Z(t)
t
.
Z(t)

Fig. 3.3. Sample path of a Markov
process with only drift and jumps

t

It is also possible that A(z, t) is nonzero, but B(z, t) is zero and here the sample
paths are, as in Fig. 3.3, composed of pieces of smooth curve [solutions of (3.5.14)]
with discontinuities superimposed. This is very like the picture one would expect
in a dilute gas where the particles move freely between collisions which cause an
instantaneous change in momentum, though not position.

3.6 Equations for Time Development in Initial Time—Backward
Equations

We can derive much more simply than in Sect. 3.4, some equations which give the
time development with respect to the initial variables p, t' of p(x, t|y, t').
We consider

: I r r r
lim 2= [p(x, t]y, 1" + At') — pl(x, 1]y, )] (3.6.1)

= lim Z:_t' [dzp(z, V' + At' |y, ') [p(x, t|y, t' 4+ At')

Arr—0

— p(x, t]z, ' + At")] (3.6.2)

by use of the Chapman-Kolmogrov equation in the second term and by noting
that the first term gives 1 X p(x, t|y, t' + At’).
The assumptions that are necessary are now the existence of all relevant deriva-
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tives, and that p(x, ¢| y, t') is continuous and bounded in x,t,t' for some range
t —t' > 8 > 0. We may then write

im [ dz p(z, ' + AP |, ) [p(x, 1], ') — p(x, 1]z, )] (3.63)

We now proceed using similar techniques to those used in Sect. 3.4.1 and finally
derive

P (x,!'|J’,f')__ ?E(_itly_,t') __l_ r azp.(x’—M
ot' - ‘,1:‘ Ay, 1) oy, 2 ; Bu(y’ ) ayrayj

+ [ de W(z|y, t) [p(x, t]y, t') — p(x, t|z, t)] (3.6.4)

which will be called the backward differential Chapman-Kolmogorov equation. In
a mathematical sense, it is better defined than the corresponding forward equation
(3.4.22). The appropriate initial condition for both equation is

plx, t|y, t) = d(x — y) for all 1, (3.6.5)

representing the obvious fact that if the particle is at y at time ¢, the probability
density for finding it at x at the same time is (x—p).

The forward and the backward equations are equivalent to each other. For,
solutions of the forward equation, subject to the initial condition (3.6.5) [or 3.5.4],
and any appropriate boundary conditions, yield solutions of the Chapman-
Kolmogorov equation, as noted in Sect. 3.4.2. But these have,j_ust been shown to
yield the backward equation. (The relation between appropriate boundary condi-
tions for the Fokker-Planck equations is dealt with in Sect. 5.2.1,4). The basic dif-
ference is which set of variables is held fixed. In the case of the forward equation,
we hold (p, t') fixed, and solutions exist for t 2> ¢’, so that (3.6.5) is an initial condi-
tion for the forward equation. For the backward equation, solutions exist for ' < ¢,
so that since the backward equation expresses development in ¢, (3.6.5) is really
better termed final condition in this case.

Since they are equivalent, the forward and backward equations are both useful.
The forward equation gives more directly the values of measurable quantities as a
function of the observed time, ¢, and tends to be used more commonly in applica-
tions. The backward equation finds most application in the study of first passage
time or exit problems, in which we find the probability that a particle leaves a
region in a given time.

3.7 Stationary and Homogeneous Markov Processes

In Sect. 1.4.3 we met the concept of a stationary process, which represents the
stochastic motion of a system which has settled down to a steady state, and whose
stochastic properties are independent of when they are measured. Stationarity
can be defined in various degrees, but we shall reserve the term ““stationary process™
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for a strict definition, namely, a stochastic process X(t) is stationary if X(¢) and the
process X(r + ¢) have the same statistics for any ¢. This is equivalent to saying
that all joint probability densities satisfy time translation invariance, i.e.,

P(xy, 1 X5, 1) X5, 855 .5 X, 1)
=p(x;, t, + &, X5, 8, + & X5, 13+ & ..} Xny 1, + £) 3.7.1)

and hence such probabilities are only functions of the time differences, f, — 1,. In
particular, the one-time probability is independent of time and can be simply
written as

ps(x) s (3.7.2)
and the two-time joint probability as
ps(x1, 1y — 125 X3, 0). (3.7.3)

Finally, the conditional probability can also be written as
ps(x1, 1y — 2] X3, 0). (3.7.4)

For a Markov process, since all joint probabilities can be written as products of the
two-time conditional probability and the one-time probability, a necessary and
sufficient condition for stationarity is the ability to write the one and two-time
probabilities in the forms given in (3.7.1-3).

3.7.1 Ergodic Properties

If we have a stationary process, it is reasonable to expect that average measurements
could be constructed by taking values of the variable x at successive times, and
averaging various functions of these. This is effectively a belief that the law of
large numbers (as explained in Sect. 2.5.2) applies to the variables defined by
successive measurements in a stochastic process.

Let us define the variable X(T) by

X1 = il’f _frd: x(1), (3.7.5)

where x(t) is a stationary process, and consider the limit 7 — co. This represents a
possible model of measurement of the mean by averaging over all times. Clearly

X(1)y = <x)s. (3.7.6)

We now calculate the variance of X(7). Thus,

TP = g | [ ddes topxte (3.7.7)
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and if the process is stationary,
Cx(t) x(22)) = R(t, — 1) + (X2, (3.7.8)

where R is the two-time correlation function. Hence,
1 ar
KT — 0=z [ dr R@®QT — |1]) (3.7.8)
-2T

where the last factor follows by changing variables to

R — (3.7.9)
= r]

and integrating ¢.
The left-hand side is now the variance of X(7) and one can show that under

certain conditions, this vanishes as T'— oco. Most straightforwardly, all we require
is that

lim [ de (1 — |T—|)R(r) —0 (3.7.10)
am ] T 7

which is a little obscure. However, it is clear that a sufficient condition for this
limit to be zero is for

Tdt |R@)| < oo, - (.7.11)

in which case, we simply require that the correlation function {x(,), x(¢,)) should
tend to zero sufficiently rapidly as | ¢, —¢;| — co. In cases of interest it is frequently
found that the asymptotic behavior of R(7) is

R(7) ~ Re{A exp (—1/1.)} , (3.7.12)

where 7. is a (possibly complex) parameter known as the correlation time. Clearly
the criterion of (3.7.11) is satisfied, and we find in this case that the variance in X(7T")
approaches zero so that using (3.7.6) and (2.9.4), we may write

ms-lim X(T) = (x), . (3.7.13)

This means that the averaging procedure (3.7.5) is indeed valid. It is not difficult to
extend the result to an average of an infinite set of measurements at discrete times
t, = t, +nAt.

Other ergodic hypotheses can easily be stated, and the two quantities that are of
most interest are the autocorrelation function and the distribution function.
As already mentioned in Sect. 1.4.2, the most natural way of measuring an auto-
correlation function is through the definition
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1T
6, T) =+ J dt x(1)x(t + 1) (3.7.14)

and we can rather easily carry through similar reasoning to show that
ms;lim G(z, T) = {x()x(t + 1)), , (3.7.15)
provided the following condition is satisfied. Namely, define p(z, 1) by

x(t + A+ Ox(t + Dx(t + 1)x(1)), = p(z, A) + {x(t + O)x(2))7 . (3.7.16)

Then we require
L}

lim = ?( "”) (t, )i = 0. (3.7.17)
im 3T 27| P = 7.

We can see that this means that for sufficiently large A, the four-time average
(3.7.16) factorises into a product of two-time averages, and that the “error term”
p(t, ) must vanish sufficiently rapidly for 4 — co. Exponential behaviour, such
as given in (3.7.12) is sufficient, and usually found.

We similarly find that the spectrum, given by the Fourier transform

S@) = 5 | e Gx)de (3.7.18)
as in Sect. 1.4, is also given by the procedure

S(w) = lim ~—

(3.7.19)

Finally, the practical method of measuring the distribution function is to con-
sider an interval (x,, x,) and measure x(t) repeatedly to determine whether it is in

this range or not. This gives a measure of f dx p,(x). Essentially, we are then meas-

uring the time average value of the funcuon x(x) defined by

x(x)=1 X< x<Xx, (3.7.20)
=0 otherwise,

and we adapt the method of proving the ergodicity of {x> to find that the distri-
bution is ergodic provided

l‘_m...le zjr dr( '”)fdxp,(x) j’dx[p(x,ﬂx 0) — pu()} = 0. (3.7.21)

The most obvious sufficient condition here is that
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lim p(x, 7| x’, 0) = py(x) (3.7.22)

-

'and that this limit is approached sufficiently rapidly. In practice, an exponential
lapproach is frequently found and this is, as in the case of the mean, quite sufficiently
irapid.

This condition is, in fact, sufficient for ergodicity of the mean and autocorrela-
tion function for a Markov process, since all means can be expressed in terms of
conditional probabilities and the sufficiently rapid achievement of the limit (3.7.22)
can be readily seen to be sufficient to guarantee both (3.7.17) and (3.7.10). We will
call a Markov process simply “ergodic” if this rather strong condition is satisfied.

3.7.2 Homogeneous Processes

If the condition (3.7.22) is satisfied for a stationary Markov process, then we clearly
have a way of constructing from the stationary Markov process a nonstationary
process whose limit as time becomes large is the stationary process. We simply
define the process for

Lt >t (3.7.23)
by

p(x,t) = py(x,t|xo, 1)  and (3.7.24)

p(x, t|x',t") = p(x, t|x', 1) it (3.7.25)

and all other joint probabilities are obtained from these in the Wsual manner for a
Markov process. Clearly, if (3.7.22) is satisfied, we find thatast — co orasty — — oo,

p(x, 1) — p,(x)

and all other probabilities become stationary because the conditional probability
is stationary. Such a process is known as a homogeneous process.

The physical interpretation is rather obvious. We have a stochastic system
whose variable x is by some external agency fixed to have a value x, at time #,. It
then evolves back to a stationary system with the passage of time. This is how many
stationary systems are created in practice.

From the point of view of the differential Chapman-Kolmogorov equation, we
will find that the stationary distribution function p,(x) is a solution of the stationary
differential Chapman-Kolmogorov equation, which takes the form

0 = — X5 AP 13, O] + 5 3 25z 1By@p(@, 13, 1)
+ [ dx [W(z| x)p(x, t|y, t') — W(x|2)p(z, t|y, )], (3.7.26)

where we have used the fact that the process is homogeneous to note that 4, B
and W, as defined in (3.4.1-3), are independent of ¢. This is an alternative definition
of a homogeneous process.
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3.7.3 Approach to a Stationary Process

A converse problem also exists. Suppose 4, B and W are independent of time and
Ps(2) satisfies (3.7.26). Under what conditions does a solution of the differential
Chapman-Kolmogorov equation approach the stationary solution p,(z)?

There does not appear to be a complete answer to this problem. However, we
can give a reasonably good picture as follows. We define a Lyapunov functional
K of any two solutions p, and p, of the differential Chapman-Kolgomorov equation
by

K = [ dx p\(x, 1) log [pi(x, 1)/pa(x, 1)) (3.7.27)

and assume for the maoment that neither p, nor p, are zero anywhere. We will now
show that K is always positive and dK/dt is always negative.
Firstly, noting that both p,(x, ¢) and p,(x, t) are normalised to one, we write

K[py, p2, t] = [ dx p\(x, t) {log[pi(x, t)/[pax, 1)]
+ po(x, )pi(x, 1) — 1} (3.7.28)

and use the inequality valid for all z > 0,
—logz4+2z—120, (3.7.29)

to show that X > 0.
Let us now show that dK/dr < 0. We can write (using an abbreviated notation)

dK 7] d
G = Tas[Llog py + 1 —10g p2) — 222 (p/pal]. (3.7.30)

We now calculate one by one the contribution to dK/dt from drift, diffusion, and
jump terms in the differential Chapman-Kolmogorov equation:

a;_f) drift - Z; I dx [_ [log (p“(pﬂ + lléra_xt(Arpl)

+ (Pl 5= (Aup)| (32.31)
which can be rearranged to give
(“;if) =3 é% [— A.p, log (2:/p2)]. (3.7.32)
Similarly, we may calculate

daK . 1 )
(E aier -7 % .[ dx {UOg (p\[p2) + I]a_x_j;; (B,p)

— (plp2) (-%;?;; (BuPz)] (3.7.33)
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and after some rearranging we may write
d -1 k3 9
(). = —7 5 dxpiBy [5 T8 pulpol {57 Tog (pufpo)]
1 9*
+ 3 g [ dx 3x,9%, [Pl B, log (Pl/Pz)] . (3.7.34)

Finally, we may calculate the jump contribution similarly:

Efd_f) jump = Idxdx,{[ W(x|x)pi(x', 1) — W(x'| x)pi(x, 1)]

x {log [pi(x, t)/p(x, )] + 1}
— [W(x| x)p.(x', 1) — W(x'| x)py(x, 1)] pi(x, 1)[pa(x, 1) (3.7.35)

and after some rearrangement,

(%‘:E) jomp [ dxdx' W(x|x"){px(x’, 1)[¢' log [4/8'] — ¢ + 41}, (3.7.36)
where
¢ = pi(x, 1)/ps(x, 1) (3.7.37)

and ¢’ is similarly defined in terms ofix'.

We now consider the simplest case. Suppose a stationary %olution p,(x) exists
which is nonzero everywhere, except at infinity, where it and its first derivative
vanish. Then we may choose p,(x, t) = p,(x). The contributions to dK/dt from
(3.7.32) and the second term in (3.7.34) can be integrated to give surface terms
which vanish at infinity so that we find

(‘%)m -0 (3.7.38a)
(‘i,—’f) <0 (3.7.38b)
(‘% <O, (3.7.38¢)

where the last inequality comes by setting z = ¢'4’ in (3.7.29).

We must now consider under what situations the equalities in (3.7.38) are ac-
tually achieved. Inspection of (3.7.36) shows that this term will be zero if and only
if § = ¢’ for almost all x and x’ which are such that W(x|x") # 0. Thus, if
W(x|x') is never zero, i.e., if transitions can take place in both directions between
any pair of states, the vanishing of the jump contribution implies that g(x) is
independent of x, i.e.,
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pi(x, t)[p,(x) = constant. (3.7.39)

The constant must equal one since p,;(x, t) and p,(x) are both normalised.

The term arising from diffusion will be strictly negative if B, is almost every-
where positive definite. Hence, we have now shown that under rather strong condi-
tions, namely,

Ps(x) # 0 with probability 1
W(x|x") # 0 with probability 1, (3.7.40)
B, /(x) positive definite with probability 1,

that any solution of the differential Chapman-Kolmogorov equation approaches
the stationary solution p,(x) at t — oo.
The result fails in two basic kinds of systems.

a) Disconnected State Space

The result is best illustrated when 4, and B;; vanish, so we have a pure jump system.
Suppose the space divides into two regions R, and R; such that transitions from R,
to R, and back are impossible; hence, W(x|x’) = 0 if x and x' are not both in
R, or R,. Then it is possible to have dK/dt = 0 if

pix,t) = Ap(x) x€ER, (3.7.41)
= lzps(x) x e RZ

so that there is no unique stationary distribution. The two regions are disconnected
and separate stochastic processes take place in each, and in each of these, there is a
unique stationary solution. The relative probability of being R, or R, is not changed
by the process.

A similar result holds, in general, if as well we have B, and A4, vanishing
on the boundary between R, and R,.

b) p, (x) Vanishes in Some Definite Region
If we have

ps(x) =0 x € R, (3.7.42)
+ Q x e R;

and again 4, and B, vanish, then it follows that, since p,(x) satisfies the stationary
equation (3.7.26),

W(x|y)=0 xR,y ER,. (3.7.43)

In other words, no transitions are possible from the region R, where the stationary
distribution is positive to R,, where the stationary distribution vanishes.
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3.7.4 Autocorrelation Function for Markov Processes

For any Markov process, we can write a very elegant formula for the autocorrela-
tion function. We define

X()|[x0, to]) = [ dx x p(x, t]x0, to) , (3.7.44)

then the autocorrelation matrix

(X()X(to)") = [ dx dx, xxip(x, t; X0, to) (3.7.45)
= [ dxy (X(1)|[x0, to]> X5 p(x0, to) - (3.7.46)

Thus we see that (3.7.44) defines the mean of X{(¢) under the condition that X had
the vahe x, at time f,, and (3.7.46) tells us that the autocorrelation matrix is ob-
tained by averaging this conditional average (multiplied by x7) at time t,. These
results are true by definition for any stochastic process.

In a Markov process we have, however, a unique conditional probability which
determines the whole process. Thus, for a Markov process, we can state that
{X(2)|[xq, to]> is a uniquely defined quantity, since the knowledge of x, at time ¢,
completely determines the future of the process. The most notable use of this
property is in the computation of the stationary autocorrelation function. To
illustrate how this uniqueness is important, let us consider a non-Markov stationary
process with joint probabilities

Ps(xls 1 Xg b2} ... Xy, rn)a i (3747)

which, of course, depend only on time differences. Let us now create a correspond-
ing nonstationary process by selecting only sample paths which pass through the
point x = a at time ¢ = 0. Thus, we define

pl(xls tl;xls tﬁ; v xm rn) = p!(xl) tl! xb 12; aas xm f,,lﬂ, 0)' (3'7'48)
Then for this process we note that
<X(r)|[x0: rﬂ])n = I dx xps(x’ tlxb! ttl; " 0) (3.749)

which contains a dependence on @ symbolised by the subscript @ on the average
bracket. If the original stationary process possesses appropriate ergodic properties,
then

lim p,(x, t + t|xo, to + 7; @,0) = py(x, t — 5| x5, 0) (3.7.50)
[ e

-0 that we will also have a stationary conditional average of x

(X(0)|[xo, 20>, = lim (X(t + 7)|[xo, 10 + 7D, (3.7.51)

and the stationary autocorrelation matrix is given by
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(X()X(10)7)s = [ dxo X3¢ X(1)|[xo, to]>+Ps(Xo) (3.7.52)
= lim ¢X(t + ) X(% + D)7
= IIT _[ de IE(I(I—I— T)I[xﬂs ID + t])apa(x(b 'r(! + T) . (3‘?-53)

However, when the process is Markovian, this cumbersome limiting procedure is
not necessary since

Markov == (X(1)|[x0, t0]), = {X(1)|[x0, to)).
— (X0 [xor 1) - (3.7.54)

Equation(3.7.46) is 4 regression theorem when applied to a Markov process and is
the basis of a more powerful regression theorem for linear systems. By this we mean
systems such that a linear equation of motion exists for the means, i.e.,

d{X(t)|[xo, to]>/dt = —ALX(t) |[x0, to]> (3.7.55)

which is very often the case in systems of practical interest, either as an exact result
or as an approximation. The initial conditions for (3.7.55) are clearly

(X(to) | [x0, ta]) = x¢ . (3.7.56)
Then from (3.7.50, 59)

4 XOX (W) = —AKOX (@) (3.7.57)

with initial conditions {X(#,)X(¢,)*>. The time correlation matrix

X)X (10)") — (X)) <X (1)) = (X(1), X (1)) (3.7.58)

obviously obeys the same equation, with the initial condition given by the covari-
ance matrix at time f,. In a stationary system, we have the result that if G(z) is the
stationary time correlation function and ¢ the stationary covariance matrix, then

dG(t)/dt = —A G(1) (3.7.59)
and

G0)=o (3.7.60)
or

G(t) = exp[—At]o (3.7.61)

which is the regression theorem in its simplest form. We again stress that it is valid
for the Markov processes in which the mean values obey linear evolution equations
like (3.7.55).
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For non-Markov processes there is no simple procedure. We must carry out the
complicated procedure implicit in (3.7.53).

3.8 Examples of Markov Processes

We present here for reference some fundamental solutions of certain cases of the
differential Chapman-Kolmogorov equation. These will have a wide application
throughout the remainder of this book.

3.8.1 The Wiener Process

This takes its name from N. Wiener who studied it extensively. From the point of
view of this chapter, it is the solution of the Fokker-Planck equation as discussed
in Sect.3.5.2, in which there is only one variable W(r), the drift coefficient is zero and
the diffusion coefficient is 1. Thus, the Fokker-Planck equation for this case is

? 1@
37 PO 11 Wo, 16) = 5 55 p(W, 1| Wo, Lo) - (3.8.1)

Utilising the initial condition
P(W, 10| wo, to) = 8(w — wo) .. (38.2)
on the conditional probability, we solve (3.8.1) by use of the characteristic function
#(s, t) = [ dw p(w, t|wo, t,) exp (isw) (3.8.3)

which satisfies

g‘? — —} 5% (3.8.4)
so that
§s,1) = exp[ = 3 530 — 10| 865, 10 (38.9)

From (3.8.2), the initial condition is’
#(s, to) = exp (isw,)

so that

8(s, 1) = exp [iswo —} st — :n)]. (3.8.6)
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Performing the Fourier inversion, we have the solution to (3.8.1):
p(w, t|wo, to) = [2n(t — 10)]7"/* exp [—(w — wo)*/2(t — 1,)] . (3.8.7)

This represents a Gaussian, with

(W(t)) = wo (3.8.8)
AW(t) — wo]*) =1t — 1, (3.8.9)
so that an initially sharp distribution spreads in time, as graphed in Fig.3.4.
5
K
£
z
=%
q Fig. 3.4. Wiener process: spreading of an
initially sharp distribution p(w, f|w,, 1)
—_— N, with increasing time t — t,

A multivariate Wiener process can be defined as

W(1) = [Wi(1), Wa(1), ..., W,(1)] .(3.8.10)
which satisfies the multivariable Fokker-Planck equation

a 1 a*

37 PO 11Wo, 1) = = 31505 p(w, t|wo, 1) (3.8.11)

whose solution is

pOw, t[wo , to) = [2n(t — 1,)]™2 exp [— (W — wo)*/2(t — 1,)], (3.8.12)
a multivariate Gaussian with

(W) = w, (3.8.13)
and

AWit) — wod [W(1) — wo > = (t — 1), . (3.8.14)
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The one-variable Wiener process is often simply called Brownian motion, since the
Wiener process equation (3.8.1) is exactly the same as the differential equation of
diffusion, shown by Einstein to be obeyed by Brownian motion, as we noted in
Sect. 1.2. The terminology is, however, not universal.

Points of note concerning the Wiener process are:

a) Irregularity of Sample Paths

Although the mean value of W(t) is zero, the mean square becomes infinite as 1 —
co. This means that the sample paths of W(t) are very variable, indeed surprisingly
so. In Fig. 3.5, we have given a few different sample paths with the same initial point
to illustrate the extreme non-reproducibility of the paths.

b) Non-differentiability of Sample Paths
The Wiener process is a diffusion process and hence the sample paths of W(r) are
continuous. However, they are not differentiable. Consider

Prob {|[W(t + h) — W(D))/h| > k} . (3.8.15)

From the solution for the conditional probability, this probability is

2 T dw(2mh)~%exp (—w?[2h) (3.8.16)
kh

and in the limit as 2 — O this is one. This means that no matter what value of k
choose, |[W(t + h) — W(1)]/h| is almost certain to be greater than this, i.e., the
derivative at any point is almost certainly infinite. This is in agreement with the
similar intuitive picture presented in Sect.3.5.2 and the simflated paths given in
Fig. 3.5 illustrate in point dramatically. This corresponds, of course, to the well-
known experimental fact that the Brownian particles have an exceedingly irregular
motion. However, this clearly an idealisation, since if W(z) represents the position

WI(t)

EH
¥

Fig. 3.5. Three simulated sample paths of the Wiener process, illustrating their great variability
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of the Brownian particle, this means that its speed is almost certainly infinite. The
Ornstein-Uhlenbeck process is a more realistic model of Brownian motion (Sect.
3.8.4).

¢) Independence of Increment
The Wiener process is fundamental to the study of diffusion processes, and by
means of stochastic differential equations, we can express any diffusion process in
terms of the Wiener process.

Of particular importance is the statistical independence of the increments of
W(t). More precisely, since the Wiener process is a Markov process, the joint proba-
bility density can be written

P(W,,, tu; Wn_1, tn—l'; Wa2s fn—z; e 3 W, tﬂ)

n—1
= ,1_;[, PWesrs tipa [ Wiy 1) p(Wo, 10) 3.8.17
and using the explicit form of the conditional probabilities (3.8.7), we see that

P(Wm ru; Wn_1, rn—l; Wa_2, fu_z; ceey Wcs l!‘0)

n—=1
=‘1_'£ {2n(tsy — D)7V 2 exp [—=(Wepr — w2t — 1]} P(Wo, 1) . (3.8.18)
If we define the variables

AW, = W(t) — W(t,._)) (3.8.19)
At =t —1t,,, (3.8.20)
then the joint probability density for the AW, is

P(Aw,; Aw,_i; Aw, 55 ... Awy; wy)
= f[ {(2nAr) 12 exp (—Aw?[2At)} p(wq, to) (3.8.21)
(=]

which shows from the definition of statistical independence given in Sect.2.3.4,
that the variables AW, are independent of each other and of W(t,).

The aspect of having independent increments AW, is very important in the
definition of stochastic integration which is carried out in Sect. 4.2.

d) Autocorrelation Functions
A quantity of great interest is the autocorrelation function, already discussed in
Sects. 1.4.2 and 3.7.4. The formal definition is

(HOW(S) | [Wo, o> = [ dwydwa wiwap(wy, t5 W2, 5| Wo, to), (3.8.22)

which is the mean product of W{(t) and W(s) on the condition that the initial value is
W(t,) = wo, and we can see, assuming ¢ > 5, that
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{W(OW(5) | [wos ta]) = [H(t) — WE)IW() + [WE)PD - (3.8.23)

Using the independence of increments, the first average is zero and the second is
given by (3.8.9) so that we have, in general,

(W(OYW(s) | [wo, to]) = min(t — to, s — 1) + W (3.8.29)

which is correct for t > sand t < s.

3.8.2 The Random Walk in One Dimension

This is a very famous problem, which is now considered classical. A man moves
along a line, taking, at random, steps to the left or the right with equal probability.
The steps are of length / so that his position can take on only the value nl, where n
is integral. We want to know the probability that he reaches a given point a
distance nl from the origin after a given elapsed time.

The problem can be defined in two ways. The first, which is more traditional, is
to allow the walker to take steps at times N7 (N integral) at which times he must
step either left or right, with equal probability. The second is to allow the walker to
take steps left or right with a probability per unit time d which means that the
walker waits at each point for a variable time. The second method is describable
by a Master equation. ¥

To do a Master equation treatment of the problem, we con51der that the transi-
tion probability per unit time is given by the form

W+ 1|nt) = Wn— 1|n, t) = d, (3.8.25)

otherwise, W(n|m, t) = 0 so that, according to Sect.3.5.1, the Master equation
for the man to be at the position nl/, given that he started at n’l, is
0. P(n, t|n',t"y=d[P(n+ 1,t|n',t") + P(n — 1, ¢t|n", 1)
— 2P(n, t|n't")). (3.8.26)
The more classical form of the random walk does not assume that the man makes
his jump to the left or right according to a Master equaton, but that he jumps left
or right with equal probability at times Nz, so that time is a discrete variable. In
this case, we can write
P(n, (N + Dz|n', N't) = } [P(n + 1, Nz|n', N'7)
+ P(n — 1, Nt|n', N'1)] . (3.8.27)

If 7 is small, we can view (3.8.26, 27) as approximations to each other by writing

P(n, (N + 1)t|n’, N't) = P(n, Nt|n', N't) + 19,P(n, t|n’, t') (3.8.28)
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with f = N7, ' = N’'7 and d = 477, so that the transition probability per unit

time in the Master equation model corresponds to half of the inverse waiting time
T in the discrete time model.

Both systems can be easily solved by introducing the characteristic function

G(s, t) = '™ = ’2 P(n, t|n', t")e'™ (3.8.29)
in which case the Master equation gives

9,G(s, 1) = d(e"” + e~ — 2)G(s, 1) (3.8.30)
and the discrete time equation becomes

G(s, (N+ D1) = (e + e *)G(s, N7) . (3.8.31)

Assuming the man starts at the origin n’ = 0 at time ¢’ = 0, we find

G(s,0) =1 (3.8.32)
in both cases, so that the solution to (3.8.30) is

Gi(s, 1) = exp (e + eV — 2)ud], (3.8.33)
and to (3.8.31)

Gafs, N1) = [§(e" e )™ (3.8.39)

which can be written

df 1 =i N
Gy(s, 1) =1+ N e+ et —2)f . (3.8.35)
Using the usual exponential limit
. a\¥
lim (1 + W) —e, (3.8.36)
we see that, provided s is sufficently small
lim Ga(s, 1) = Gi(s, 1) (3.8.37)

which, by the properties of the characteristic function (v) in Sect.2.6, means the
probability distributions approach each other.

The appropriate probability distributions can be obtained by expanding G, (s, N1)
and Gy(s, t) in powers of exp (is); we find

Py(n, 1|0, 0) = e~24I(4d) (3.8.38)
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Py(n, Nz|0,0) = (})”N![(N — !(N £ z]_'. (3.8.39)

The discrete time distribution is also known as the Bernoulli distribution; it gives
the probability of a total of n heads in tossing an unbiased coin N times.

The limit of continuous space is also of interest. If we set the distance travelled
as

x =nl (3.8.40)
so that the characteristic function of the distribution of x is

(s, 1) = {e'**> = G,(Is, t) exp[(e'* + e~ — 2)td] . (3.8.41)
then the limit of infinitesimally small steps / — 0 is

$i(s, t) — exp (—sUD), (3.8.42)

where D = lim (*d). (3.8.43)

=0

This is the characteristic function of a Gaussian (Sect.2.8.1) of the form
p(x, t]0,0) = (4nDt)~"'* exp (—x*/4Dr) (3.8.44)
¥

and is of course the distribution for the Wiener process (Sget.3.8.1) or Brownian

motion, as mentioned in Sect.1.2. Thus, the Wiener process can be regarded as the

limit of a continuous time random walk in the limit of infinitesimally small step size.
The limit

[0, t-0, with D= lim (*/7) (3.8.45)
-0

of the discrete time random walk gives the same result. From this form, we see
clearly the expression of D as the mean square distance travelled per unit time.

We can also see more directly that expanding the right-hand side of (3.8.26)
as a function of x up to second order in / gives

3,p(x, t]0, 0) = (I*d)d2p(x, 1|0, 0) . (3.8.46)

The three processes are thus intimately connected with each other at two levels,
namely, under the limits considered, the stochastic equations approach each other
and under those same limits, the solutions to these equations approach each
other. These limits are exactly those used by Einstein. Comparison with Sect.1.2
shows that he modelled Brownian motion by a discrete time and space random
walk, but nevertheless, derived the Wiener process model by expanding the equa-
tions for time development of the distribution function.
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The limit results of this section are a slightly more rigorous version of Einstein’s
method. There are generalisations of these results to less specialised situations and it
is a fair statement to make that almost any jump process has some kind of limit
which is a diffusion process. However, the precise limits are not always so simple,
and there are limits in which certain jump processes become deterministic and
are governed by Liouville’s equation (Sect.3.5.3) rather than the full Fokker-Planck
equation. These results are presented in Sect.7.2.

3.8.3 Poisson Process

We have already noted the Poisson process in Sect.1.4.1. The process in which
electrons arrive at an anode or customers arrive at a shop with a probability per
unit time d of arriving, is governed by the Master equation for which

Wh+lint)=4d; (3.8.47)
otherwise,
Wn|m,t)=0. (3.8.48)

This Master equation becomes
0.P(n, t|n',t") =d[P(n — 1,t|n',t") — P(n, t|n', t") (3.8.49)

and by comparison with (3.8.26) also represents a “one-sided” random walk, in
which the walker steps to the right only with probability per unit time equal to d.
The characteristic function equation is similar to (3.8.30):

3,G(s, t) = d[exp (is) — 1]G(s, t) (3.8.50)
with the solution
G(s, t) = exp {td[exp (is) — 1] (3.8.51)

for the initial condition that there are initially no customers (or electrons) at time
t =0, yielding

P(n, t|0,0) = exp (— td)(xd)[n!, (3.8.52)
a Poisson distribution with mean given by

{N(@)) =1d. (3.8.53)
In contrast to the random walk, the only limit that exists is / — 0, with

dl=v (3.8.54)
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held fixed and the limiting characteristic function is
l,u‘gl {exp [td(e'* — 1)]} = exp (itvs) (3.8.55)

with the solution
p(x, t]0,0) = 8(x — v1) . (3.8.56)

We also see that in this limit, we would obtain from the Master equation (3.8.49)
Liouville’s equation, whose solution would be the deterministic motion we have
derived.

We can do a slightly more refined analysis. We expand the characteristic func-
tion up to second order in s in the exponent and find

é(s, t) = G(Is, t) = exp [t(ivs — s*D/2)] (3.8.57)
where, as in the previous section,
D=1DId.

This is the characteristic function of a Gaussian with variance Dt and mean ¢,
so that we now have

p(x, t]0,0) = 2rDs) 2 exp [— (x — vt)*/2Dt] . (3.8.58)
It is also clear that this solution is #he sclution of

3,p(x, 110, 0) = —v d,p(x, 1]0,0) + 4D 32p(x, 1]0,0 (3.8.59)
which is obtained by expanding the Master equation (3.8.49) to order /2, by writing

P(n — 1,1]0,0) = d p(x — 1,¢]0, 0)
= dp(x,1]0,0) — Idd,p(x, 1|0,0) + }2dd2p(x, 1|0,0). (3.8.60)

However, this is an approximation or an expansion and not a limit. The limit / — 0
gives Liouville’s equation with the purely deterministic solution (3.8.56). Effectively,
the limit / — 0 with well-defined v corresponds to D = 0. The kind of approxi-
mation just mentioned is a special case of van Kampen'’s system size expansion
which we treat fully in Sect.7.2.3.

3.8.4 The Ornstein-Uhlenbeck Process

All the examples so far have had no stationary distributien, that is, as t — oo, the
distribution at any finite point approaches zero and we see that, with probability
one, the point moves to infinity.

If we add a linear drift term to the Wiener process, we have a Fokker-Planck
equation of the form

0,p = d(kxp) + D dip, (3.8.61)
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where by p we mean p(x, 1| x,, 0). This is the Ornstein-Uhlenbeck process [3.5). The
equation for the characteristic function

#(s) = [ e“**p(x, t|x,, 0)dx is (3.8.62)
0,9 + ksd,p = — } Ds*¢ . (3.8.63)
The method of characteristics can be used to solve this equation, namely, if

u(s,t,4) = a and v(s, t,8) = b (3.8.64)

are two integrals of the subsidary equation (with a and b arbitrary const)

d¢

dt -
1 $Ds*g’

ds
- a= (3.8.65)

then a general solution of (3.8.63) is given by

Sflu,v) = 0.

The particular integrals are readily found by integrating the equation involving dt
and ds and that involving ds and dg; they are

u(s, t, ) = sexp (— kt) and (3.8.66)
v(s, 1, ) = ¢ exp (Ds?/4k), (3.8.67)

and the general solution can clearly be put in the form v = g(u) with g(u) an arbi-
trary function of u. Thus, the general solution is

&(s, t) = exp (— Ds*/4k)g[s exp (-—kt)] (3.8.68)
The boundary condition

p(x, 0] x,, 0) = 8(x — x,) (3.8.69)
clearly requires

#(s, 0) = exp (ix,s) (3.8.70)
and gives

g(s) = exp (Ds*/dk + ix,s) ,
and hence,

#(s, 1) = exp ]::_%s_z (1 —e™ ) + isxne"“] (3.8.71)
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which, from Sect.2.8.1, corresponds to a Gaussian with

{X()) = xo exp (—kt) (3.8.72)
var {X(0)} = . [1 — exp (—2k0)]. (38.73)

Clearly, as t — oo, the mean and variance approach limits 0 and D/2k, respec-
tively, which gives a limiting stationary solution. This solution can also be obtained
directly by requiring d,p = 0, so that p satisfies the stationary Fokker-Planck equa-
tion

ax[kxp + iDaxp} =0 (3.8.74)

and integrating once, we find

[kxp + wa,pL —o. (3.8.75)

The requirement that p vanish at —co together with its derivative, is necessary for
normalisation. Hence, we have

1 2kx
—0.p = —== 3.8.76
5 0P D , ( )
sothat p,(x) = (nD/k)™"'* exp (—kx*/D) - (3.8.77)

which is a Gaussian with mean 0 and variance D/2k, as predicted from the time-
dependent solution.

It is clear that a stationary solution can always be obtained for a one variable
system by this integration method if such a stationary solution exists. If a stationary
solution does not exist, this method gives an unnormalisable solution.

Time Correlation Functions for the Ornstein-Uhlenbeck Process. The time correla-
tion function analogous to that mentioned in connection with the Wiener process
can be calculated and is a measurable piece of data in most stochastic systems.
However, we have no easy way of computing it other than by definition

XX )| [xor tol) = [ ] dxidxz X1, p(x4, 15 X2, 5| Xo, 1) (3.8.78)
and using the Markov property

= [[ dx\dx; x,x3 p(x1, t| X2, $)p(X2, 5| X0, t0) (3.8.79)
on the assumption that

t>s5> 1. (3.8.80)
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The correlation function with a definite initial condition is not normally of as
much interest as the stationary correlation function, which is obtained by allowing the
system to approach the stationary distribution. It is achieved by putting the initial
condition in the remote past, as pointed out in Sect. 3.7.2. Letting f, — —oo, we
find

lim p(x, 5| Xo, to) = pu(x2) = (D[k)~"? exp (— kx3/D) . (3.8.81)

tg=—e=

and by straightforward substitution and integration and noting that the stationary
mean is zero, we get

XX (), = <X(:),X(S)>. = 2%61[) (—klt—sl]). (3.8.82)

This result demonstrates the general property of stationary processes: that the
correlation functions depend only on time differences. It is also a general result
[3.6] that the process we have described in this section is the only stationary Gaus-
sian Markov process in one real variable.

The results of this subsection are very easily obtained by the stochastic differ-
ential equation methods which will be developed in Chap.4.

The Ornstein-Uhlenbeck process is a simple, explicitly representable process,
which has a stationary solution. In its stationary state, it is often used to model a
realistic noise signal, in which X(¢) and X(s) are only significantly correlated if

[t —s| ~1lk=r1. (3.8.83)

(More precisely, 7, known as the correlation time can be defined for arbitrary
processes X(s) by

T = [ de CX(1), X(O)./var {X}, (3.8.84)
0

which is independent of the precise functional form of the correlation function).

3.8.5 Random Telegraph Process

We consider a signal X(r) which can have either of two values a and b and switches
from one to the other with certain probabilities per unit time. Thus, we have a
Master equation

0.P(a, t|x, o) = —AP(a, t|x, 1) + pP(b, 1] x, 1)

(3.8.85)
0.P(b, t| x, to) = AP(a, t|x, to) — uP(b, t|x, to)

for which the solution can simply be found by noting that

P(a, t|x, t)) + P(b, t]|x, 1) = 1



78 3. Markov Processes

and that a simple equation can be derived for AP(a, t|x, t,) — uP(b, t|x, t,), whose
solution is, because of the initial condition

P(X', to| x, to) = Oy xr » (3.8.86)

A'P(a, t|x$ fo) - ﬂP(b, tlx; fﬂ) = exp [_(’1 + #)(f - 10)1(16‘,_; - Juab.x) (388?)
so that

—_~ — - b — T
P(a, t|x, t;) = pr + exp[—(A 4+ p) (1 — )] (A+y O, x Atu 5"") (3.8.88)

= exp [+ ) ¢ = ) s — 7 00

A
P(b!t!x’tﬂ)=}~_— “A‘i‘ﬂ

+u
This process clearly has the stationary solution obtained by letting t, — —oco:

P@) =t

+
=

(3.8.89)

P

+
"=

which is, of course, obvious from the Master equation.
The mean of X(¢) and its variancéare straightforwardly computed :

‘e

(XD [Xo, to]) = 25 XP(x, t] X0, to)

_au+ bl B B _au+ bl
~ BT+ ap =+ e — 1] = P s

so that

_ap+ bl 1
X, = PEE (3.8.91)

The variance can also be computed but is a very messy expression. The stationary
variance is easily computed to be

_(a— byl

var (X}, = G (3.8.92)

To compute the stationary time correlation function, we write (assuming ¢ = )
X)X, = erx’P(x, t|x', s)Py(x") (3.8.93)
= Z‘ x'(X(@) | [x", sPP(x") . (3.8.94)
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we now use (3.8.90-92) to obtain

CX(DX(5))s = XD} + exp [—(4 + )t — )NX?, — (XD} (3.8.95)
_ [ap+ bA\? _ (@ —byul
= ( #+i) + exp [—(A + ) s)]————(’1 ol (3.8.96)
Hence,
1 (a—b)*ul
X(1), X(5))s = (X()X(5)), — (XDl =exp[—(4 +u)|t—sI]7a TP (3.8.97)

Notice that this time gorrelation function is of exactly the same form as that of the
Ornstein-Uhlenbeck process. Higher-order correlation functions are not the same
of course, but because of this simple correlation function and the simplicity of the
two state process, the random telegraph signal also finds wide application in
model building.



